The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

An in vitro study of the structure-activity relationships of sulfated polysaccharide from brown algae to its antioxidant effect.

In this paper, the structure-activity relationships of chemically modified uronic acid polymer fragments from brown algae with regard to their antioxidant effects on H2O2-damaged lymphocyte were studied. The results indicated that the most potent antioxidant activity was obtained from the sulfated polysaccharide with ratio of mannuronate blocks (M-blocks) to guluronate blocks (G-blocks) of 3 to 1 and carboxyl residue unesterified. The sulfated G-blocks with esterified carboxyl residue also prevented lymphocyte from injury. However, the sulfated G-blocks bearing unesterified carboxyl residue hardly exerted antioxidant activity. These findings suggested that both M-blocks and esterified carboxyl residue were determinant structures in preventing lymphocyte from being oxidized by H202, indicating that the existence of M-blocks was more important in scavenging free radicals.[1]

References

  1. An in vitro study of the structure-activity relationships of sulfated polysaccharide from brown algae to its antioxidant effect. Hu, J.F., Gen, M.Y., Zhang, J.T., Jiang, H.D. Journal of Asian natural products research. (2001) [Pubmed]
 
WikiGenes - Universities