The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Molecular pathology and pathobiology of osteoarthritic cartilage.

The biochemical properties of articular cartilage rely on the biochemical composition and integrity of its extracellular matrix. This matrix consists mainly of a collagen network and the proteoglycan-rich ground substance. In osteoarthritis, ongoing cartilage matrix destruction takes place, leading to a progressive loss in joint function. Beside the degradation of molecular matrix components, destabilization of supramolecular structures such as the collagen network and changes in the expression profile of matrix molecules also take place. These processes, as well as the pattern of cellular reaction, explain the pathology of osteoarthritic cartilage degeneration. The loss of histochemical proteoglycan staining reflects the damage at the molecular level, whereas the supramolecular matrix destruction leads to fissuring and finally to the loss of the cartilage. Chondrocytes react by increasing matrix synthesis, proliferating, and changing their cellular phenotype. Gene expression mapping in situ and gene expression profiling allows characterization of the osteoarthritic cellular phenotype, a key determinant for understanding and manipulating the osteoarthritic disease process.[1]

References

  1. Molecular pathology and pathobiology of osteoarthritic cartilage. Aigner, T., McKenna, L. Cell. Mol. Life Sci. (2002) [Pubmed]
 
WikiGenes - Universities