The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

A cysteine protease inhibitor prevents suspension-induced declines in bone weight and strength in rats.

In this study, we examined the effects of a potent cysteine protease inhibitor, N-(L-3-trans-carboxyoxirane-2-cabonyl)-L-leucine-4-aminobutylamide (E-64a), on bone weight and strength in tail-suspended rats. We first administered a vehicle or 4 or 8 mg/rat of E-64a to rats fed with a low calcium diet for 7 wks to determine effective doses of E-64a on bone resorption in vivo. Femoral cathepsin K-like activity and serum hydroxyproline level in rats fed with a low calcium diet were significantly higher than those in rats fed with a standard diet. The intraperitoneal injection of 8 mg/rat of E-64a to rats decreased their serum calcium and hydroxyproline concentrations after 3 to 6 hrs in parallel with changes in femoral cathepsin K-like activity, while 4 mg/rat of E-64a had weaker effects on these parameters. Based on these results, we injected 8 mg/rat of E-64a to tail-suspended rats twice a day for 2 wks and compared the results with those of treatment with 1 mg/rat of etidronate, a bisphosphonate, twice a week. In tail-suspended rats, femoral weight and strength, assessed by three-point bending test, significantly decreased from Day 5 to 21, while femoral cathepsin K-like activity and serum calcium and hydroxyproline concentrations did not change. E-64a inhibited femoral cathepsin K-like activity in tail-suspended rats, but etidronate did not. E-64a as well as etidronate significantly prevented the suspension-induced declines in bone weight and strength. However, more frequent injection and higher doses were required for E-64a to exhibit significant efficacy of antiresorption, compared with those of etidronate. Our results suggest that a cysteine protease inhibitor could improve suspension-induced osteopenia by inhibiting cathepsin K-like activity in bone; however, it needs several improvements in the effect as a clinical drug.[1]

References

  1. A cysteine protease inhibitor prevents suspension-induced declines in bone weight and strength in rats. Nikawa, T., Ikemoto, M., Watanabe, C., Kitano, T., Kano, M., Yoshimoto, M., Towatari, T., Katunuma, N., Shizuka, F., Kishi, K. Journal of physiological anthropology and applied human science. (2002) [Pubmed]
 
WikiGenes - Universities