The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Signaling adaptor protein v-Crk activates Rho and regulates cell motility in 3Y1 rat fibroblast cell line.

The adaptor protein Crk has been reported to associate with focal adhesions and is thought to be involved in integrin-mediated signaling pathway. However, the precise mechanism of Crk-dependent regulation of cytoskeleton still remains under investigation. In this study, we have established a v-Crk-inducible cell line in rat fibroblasts 3Y1 cells and found that v-Crk activated Rho and induced actin stress fiber formation. In addition to the induction of tyrosine-phosphorylation of p130(Cas) and paxillin, we demonstrated that v-Crk induced threonine-phosphorylated bands sized at 72/78 kDa found specifically in 3Y1 cells. Both of the inhibitors of Rho and Rho-associated kinase, C3 and Y27632, respectively, inhibited these v-Crk-induced biochemical effects. Although v-Crk-induced cells exhibited a decrease of cell motility, integrin stimulation recovered the suppression of motility. Furthermore, v-Crk enhanced motility in chemotactic assay toward fibronectin with additional activation of Rho and the increase of levels of CD44 cleavage. These results suggest that v-Crk activated Rho and induced actin stress fiber formation and CD44 cleavage leading to the regulation of cell motility.[1]

References

  1. Signaling adaptor protein v-Crk activates Rho and regulates cell motility in 3Y1 rat fibroblast cell line. Tsuda, M., Tanaka, S., Sawa, H., Hanafusa, H., Nagashima, K. Cell Growth Differ. (2002) [Pubmed]
 
WikiGenes - Universities