The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Organ-specific cell division abnormalities caused by mutation in a general cell cycle regulator in C. elegans.

The precise control of cell division during development is pivotal for morphogenesis and the correct formation of tissues and organs. One important gene family involved in such control is the p21/p27/p57 class of negative cell cycle regulators. Loss of function of the C. elegans p27 homolog, cki-1, causes extra cell divisions in numerous tissues including the hypodermis, the vulva, and the intestine. We have sought to better understand how cell divisions are controlled upstream or in parallel to cki-1 in specific organs during C. elegans development. By taking advantage of the invariant cell lineage of C. elegans, we used an intestinal-specific GFP reporter in a screen to identify mutants that undergo cell division abnormalities in the intestinal lineage. We have isolated a mutant with twice the wild-type complement of intestinal cells, all of which arise during mid-embryogenesis. This mutant, called rr31, is a fully dominant, maternal-effect, gain-of-function mutation in the cdc-25.1 cell cycle phosphatase that sensitizes the intestinal lineage to an extra cell division. We showed that cdc-25.1 acts at the G1/S transition, as ectopic expression of CDC-25.1 caused entry into S phase in intestinal cells. In addition, we showed that the cdc-25.1(gf) requires cyclin E. The extra cell division defect was shown to be restricted to the E lineage and the E fate is necessary and sufficient to sensitize cells to this mutation.[1]

References

 
WikiGenes - Universities