The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

1-Trichloromethyl-1,2,3,4-tetrahydro-beta-carboline (TaClo) and related derivatives: chemistry and biochemical effects on catecholamine biosynthesis.

1-Trichloromethyl-1,2,3,4-tetrahydro-beta-carboline (TaClo, 2) is a mammalian alkaloid that readily originates in the human organism, by Pictet-Spengler condensation of endogenously present tryptamine (Ta) and the non-natural hypnotic agent trichloroacetaldehyde (chloral, Clo). Due to its structural analogy to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 1), TaClo is discussed to possibly contribute to the pathogenesis of Parkinson's disease acting as an environmental toxin. Previous investigations on rats and neuronal cell cultures revealed 2 to be capable of inducing severe disturbances on the dopamine metabolism. In this paper, we report on the effects of 2 on the activity of tyrosine hydroxylase [L-tyrosine, tetrayhydropteridine/oxygen oxidoreductase (3-hydroxylating), EC 1.14,16.2; TH] in vitro using rat brain homogenates prepared from the TH-rich nucleus accumbens. TaClo (2) dose-dependently inhibited basal TH activity (IC(50)=3 microM), and after enzyme activation by pituitary adenylate cyclase-activating polypeptide (PACAP-27), it also reduced L-DOPA formation (IC(50)=15 microM). Moreover, two presumable TaClo metabolites, 2-methyl-TaClo (N-Me-TaClo, 3) and 1-dichloromethylene-1,2,3,4-tetrahydro-beta-carboline (1-CCl(2)-TH beta C, 4), which were synthesized in good yields, also proved to be potent inhibitors of TH, with the strongest effect on basal activity (similar to TaClo) being observed for 3 (IC(50)=3 microM). In contrast to TaClo, however, 3 and 4 showed biphasic effects after TH activation with PACAP-27, inducing a marked increase of enzyme activity in the nanomolar range (<0.1 microM), while TH activity was nearly completely blocked at high concentrations (IC(100)=0.1mM). An X-ray diffraction investigation on the 3-dimensional structure of the 1-CCl(2)-TH beta C-derived trifluoroacetamide 7 revealed the voluminous and quite rigid dichloromethylene substituent to be only moderately twisted out of the beta-carboline ring 'plane', thus resulting in an increased ring strain of the partially hydrogenated pyrido moiety accompanied by a strong steric hindrance of Cl(1), Cl(2), C(13), and N(2), which pushes the N-trifluoroacetyl group upwards to an even higher extent than for the TaClo-related trifluoroacetamide 8.[1]

References

  1. 1-Trichloromethyl-1,2,3,4-tetrahydro-beta-carboline (TaClo) and related derivatives: chemistry and biochemical effects on catecholamine biosynthesis. Bringmann, G., Feineis, D., God, R., Peters, K., Peters, E.M., Scholz, J., Riederer, F., Moser, A. Bioorg. Med. Chem. (2002) [Pubmed]
 
WikiGenes - Universities