The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Glutamate-cysteine ligase modifier subunit: mouse Gclm gene structure and regulation by agents that cause oxidative stress.

Glutamate-cysteine ligase is a heterodimer comprising a modifier (GCLM) and a catalytic (GCLC) subunit. In mouse Hepa-1c1c7 hepatoma cell cultures, we found that tert-butylhydroquinone (tBHQ; 50 microM) induces the GCLM and GCLC mRNAs approximately 10- and approximately 2-fold, respectively, and that these increases primarily reflect de novo transcription. We determined that the mouse Gclm gene has seven exons, spanning 22.3 kb; all exons, intron-exon junctions, and 4.7 kb of 5'-flanking region were sequenced. By RNase protection analysis, we identified two major and several minor transcription start-site clusters over a 300-bp region. The Gclm 5'-flanking region is GC-rich and lacks a canonical TATA box. Transient and stable transfection studies, using luciferase reporter constructs containing incremental Gclm 5'-flanking deletions (4.7-0.5 kb), showed high basal activity but only modest ( approximately 2-fold) inducibility by tBHQ. The only candidate motif for oxidative stress regulation (in the 4.7-kb region we sequenced) is a putative inverted electrophile response element (EPRE) 9 bp upstream from the 5'-most transcription start-site. Site-directed mutagenesis of this -9 EPRE demonstrated minimal (30-40%) decreases in tBHQ induction and no effect on basal activity-suggesting that this EPRE might be necessary but not sufficient. The nuclear erythroid factor-2 (NEF2)-related factor-2 (NRF2) is known to transactivate via EPRE motifs. In the presence of co-transfected NRF cDNA expression vector, however, no increase in Gclm promoter activity was observed. Thus, the endogenous Gclm gene shows robust transcriptional activation by tBHQ in the intact Hepa-1 cell, but reporter constructs containing up to 4.7 kb of promoter (having only the one EPRE at -9) demonstrate a disappointing response, indicating that the major tBHQ-responsive regulatory element of the mouse Gclm gene must exist either further 5'- or 3'-ward of the 4.7-kb region studied.[1]


  1. Glutamate-cysteine ligase modifier subunit: mouse Gclm gene structure and regulation by agents that cause oxidative stress. Solis, W.A., Dalton, T.P., Dieter, M.Z., Freshwater, S., Harrer, J.M., He, L., Shertzer, H.G., Nebert, D.W. Biochem. Pharmacol. (2002) [Pubmed]
WikiGenes - Universities