The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Insulin-like growth factor I prevents mannitol-induced degradation of focal adhesion kinase and Akt.

In our laboratory, we are interested in hyperosmolarity-induced apoptosis in neuronal cells. We have shown that high concentrations of glucose or mannitol induce apoptotic cell death in dorsal root ganglia in culture and in SH-SY5Y and SH-EP human neuroblastoma cells. Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that has a critical role for transmitting integrin-mediated-signals. In this study, we report that hyperosmolar treatment mediates FAK dephosphorylation and cleavage, which is prevented by insulin-like growth factor I (IGF-I) treatment. Mannitol treatment of SH-EP cells transfected with vector (SH-EP/pSFFV) results in concentration- and time-dependent dephosphorylation and degradation of FAK. Dephosphorylation and degradation of FAK are tightly correlated with apoptotic morphological changes, including the disruption of actin stress fibers, the loss of focal adhesion sites, membrane blebbing, and cell detachment. Treatment of SH-EP/pSFFV cells with IGF-I or transfection of IGF-I receptor prevents these changes. Treatment of cells with pharmacologic inhibitors of the mitogen-activated protein kinase or phosphatidylinositol 3-kinase pathways does not affect mannitol- induced FAK dephosphorylation and degradation. However, phosphatidylinositol 3-kinase is necessary for IGF-I-mediated protection against FAK alteration. Mannitol treatment also results in the degradation of Akt. Mannitol induces the activation of caspases-3 and -9 in a time course similar to the dephosphorylation and degradation of FAK. Treatment of the cells with ZVAD, a general caspase inhibitor, blocks the mannitol-induced FAK and Akt degradation as well as cell detachment and apoptosis. These results suggest that one of the pathways of mannitol-mediated apoptosis is through the degradation of FAK and Akt and that IGF-I protects the cells from apoptosis by blocking the activation of caspases, which may be responsible for the loss of FAK and Akt.[1]

References

 
WikiGenes - Universities