The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The proto-oncogene c-myc acts through the cyclin-dependent kinase ( Cdk) inhibitor p27(Kip1) to facilitate the activation of Cdk4/6 and early G(1) phase progression.

Progression through the early G(1) phase of the cell cycle requires mitogenic stimulation, which ultimately leads to the activation of cyclin-dependent kinases 4 and 6 (Cdk4/6). Cdk4/6 activity is promoted by D-type cyclins and opposed by Cdk inhibitor proteins. Loss of c-myc proto-oncogene function results in a defect in the activation of Cdk4/6. c-myc(-/-) cells express elevated levels of the Cdk inhibitor p27(Kip1) and reduced levels of Cdk7, the catalytic subunit of Cdk-activating kinase. We show here that in normal (c-myc(+/+)) cells, the majority of cyclin D-Cdk4/6 complexes are assembled with p27 and remain inactive during cell cycle progression; their function is presumably to sequester p27 from Cdk2 complexes. A small fraction of Cdk4/6 protein was found in lower molecular mass catalytically active complexes. Conditional overexpression of p27 in c-myc(+/+) cells caused inhibition of Cdk4/6 activity and elicited defects in G(0)-to-S phase progression very similar to those seen in c-myc(-/-) cells. Overexpression of cyclin D1 in c-myc(-/-) cells rescued the defect in Cdk4/6 activity, indicating that the limiting factor is the number of cyclin D-Cdk4/6 complexes. Cdk-activating kinase did not rescue Cdk4/6 activity. We propose that the defect in Cdk4/6 activity in c-myc(-/-) cells is caused by the elevated levels of p27, which convert the low abundance activable cyclin D-Cdk4/6 complexes into unactivable complexes containing higher stoichiometries of p27. These observations establish p27 as a physiologically relevant regulator of cyclin D-Cdk4/6 activity as well as mechanistically a target of c-Myc action and provide a model by which c-Myc influences the early-to-mid G(1) phase transition.[1]

References

 
WikiGenes - Universities