The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Acidic phospholipids inhibit the DNA-binding activity of DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli.

In order to initiate chromosomal DNA replication in Escherichia coli, the DnaA protein must bind to both ATP and the origin of replication (oriC). Acidic phospholipids are known to inhibit DnaA binding to ATP, and here we examine the effects of various phospholipids on DnaA binding to oriC. Among the phospholipids in E. coli membrane, cardiolipin showed the strongest inhibition of DnaA binding to oriC. Synthetic phosphatidylglycerol containing unsaturated fatty acids inhibited binding more potently than did synthetic phosphatidylglycerol containing saturated fatty acids, suggesting that membrane fluidity is important. Thus, acidic phospholipids seem to inhibit DnaA binding to both oriC and adenine nucleotides in the same manner. Adenine nucleotides bound to DnaA did not affect the inhibitory effect of cardiolipin on DnaA binding to oriC. A mobility-shift assay re-vealed that acidic phospholipids inhibited formation of a DnaA-oriC complex containing several DnaA molecules. DNase I footprinting of DnaA binding to oriC showed that two DnaA binding sites (R2 and R3) were more sensitive to cardiolipin than other DnaA binding sites. Based on these in vitro data, the physiological relevance of this inhibitory effect of acidic phospholipids on DnaA binding to oriC is discussed.[1]

References

 
WikiGenes - Universities