The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Characterization of a unique glycosylated anchor endopeptidase that cleaves the LPXTG sequence motif of cell surface proteins of Gram-positive bacteria.

The precursors of most surface proteins on Gram-positive bacteria have a C-terminal hydrophobic domain and charged tail, preceded by a conserved LPXTG motif that signals the anchoring process. This motif is the substrate for an enzyme, termed sortase, which has transpeptidation activity resulting in the cleavage of the LPXTG sequence and ultimate attachment of the protein to the peptidoglycan. While screening a group A streptococcal membrane extract for cleavage activity of the LPXTG motif, we identified an enzyme (which we term "LPXTGase") that differs significantly from sortase but also cleaves this motif. The enzyme is heavily glycosylated, which is required for its activity. Amino acid composition and sequence analysis revealed that LPXTGase differs from other enzymes, in that the molecule, which is about 14 kDa in size, has no aromatic amino acids, is rich in alanine, and is 30% composed of uncommon amino acids, suggesting a nonribosomal construction. A similar enzyme found in the membrane extract of Staphylococcus aureus, indicates that this unusual molecule may be common among Gram-positive bacteria. Whereas peptide antibiotics have been reported from bacillus species that also contain unusual amino acids and are synthesized non-ribosomally on amino acid-activating polyenzyme templates, this would be the first reported enzyme that may be similarly synthesized.[1]

References

 
WikiGenes - Universities