The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Overexpression of a kinase-deficient form of the EDR1 gene enhances powdery mildew resistance and ethylene-induced senescence in Arabidopsis.

The EDR1 gene of Arabidopsis has previously been reported to encode a Raf-like mitogen-activated protein kinase kinase (MAPKK) kinase, and to function as a negative regulator of disease resistance. A phylogenetic analysis of plant and animal protein kinases revealed, however, that plant Raf-like kinases are more closely related to animal mixed lineage kinases (MLKs) than Raf-like kinases, and are deeply divergent from both classes of animal kinases, making inferences of substrate specificity questionable. We, therefore, assayed the kinase activity of recombinant EDR1 protein in vitro. The EDR1 kinase domain displayed autophosphorylation activity and phosphorylated the common MAP kinase substrate myelin basic protein. The EDR1 kinase domain also phosphorylated a kinase-deficient EDR1 protein, indicating that EDR1 autophosphorylation can occur via an intermolecular mechanism. Overexpression of a kinase-deficient full-length EDR1 gene (35S::dnEDR1) in wild-type Arabidopsis plants caused a dominant negative phenotype, conferring resistance to powdery mildew (Erysiphe cichoracearum) and enhancing ethylene-induced senescence. RNA-gel blot analyses showed that the 35S::dnEDR1 transgene was highly transcribed in transgenic plants. Western blot analysis, however, revealed that neither the wild-type nor mutant EDR1 protein could be detected in these lines, indicating that the dominant negative phenotype may be caused by a translational inhibition mechanism rather than by a protein level effect. Overexpression of orthologous dnEDR1 constructs may provide a novel strategy for controlling powdery mildew disease in crops.[1]

References

 
WikiGenes - Universities