The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Age-dependent modulation of hippocampal excitability by KCNQ-channels.

Recently, mutations of KCNQ2 or KCNQ3, members of the KCNQ-related K(+)-channel (KCNQ-channel) family, were identified as cause of benign familial neonatal convulsions (BFNC). However, the exact pathogenic mechanisms of age-dependent development and spontaneous remission of BFNC remain to be elucidated. To clarify the age-dependent etiology of BFNC, we determined age-dependent functional switching of KCNQ-channels, GABAergic- and glutamatergic-transmission in rat hippocampus. The effects of inhibitors of KCNQ-channel, GABA- and glutamate-receptors on propagation of neuronal-excitability and neurotransmitter release were determined by 64-channel multielectrode-dish (MED64), whole-cell recording, in vitro release technique and in vivo microdialysis biosensor, using rat hippocampus from day of birth (P0) to postnatal-day 56 (P56). Inhibition of KCNQ-channels enhanced depolarization-induced glutamate and GABA releases during P0-P7, but not during P14-P28. Inhibition of KCNQ-channels magnified neuronal-excitability propagation from P0 to P14: maximal at P3, but this effect disappeared by P28. GABA(A)-receptor inhibition surprisingly reduced neuronal-excitability propagation during P0-P3, but not at P7. AMPA/glutamate-receptors inhibition reduced propagation of neuronal-excitability throughout the study period. KCNQ-channels inhibition shortened spike-frequency adaptation, but this stimulation was more predominant during P<7 than P>14. During the first week of life, KCNQ-channels performed as a predominant inhibitory system, whereas after this period GABAergic-transmission switched from excitatory to inhibitory function. Contrary, glutamatergic-transmission has acquired as excitatory function from P0. These findings suggest that the pathogenic mechanisms of age-dependent development and spontaneous remission of BFNC are, at least partially, associated with the interaction between age-dependent reduction of inhibitory KCNQ-channel activity and age-dependent functional switching of the GABAergic-system from excitatory to inhibitory action in neonatal CNS.[1]

References

  1. Age-dependent modulation of hippocampal excitability by KCNQ-channels. Okada, M., Zhu, G., Hirose, S., Ito, K.I., Murakami, T., Wakui, M., Kaneko, S. Epilepsy Res. (2003) [Pubmed]
 
WikiGenes - Universities