The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Ultrastructure and immunocytochemical characteristics of cells in the octopus cell area of the rat cochlear nucleus: comparison with multipolar cells.

Cells in the octopus cell area of the rat ventral cochlear nucleus have been connected to the monaural interpretation of spectral patterns of sound such as those derived from speech. This is possible by their fast onset of firing after each octopus cell and its dendrites have been contacted by many auditory fibres carrying different frequencies. The cytological characteristics that make these large cells able to perform such a function have been studied with ultrastructural immunocytochemistry for glycine, GABA and glutamate, and compared to that of other multipolar neurons of other regions of the ventral cochlear nucleus. Cells in the octopus cell area have an ultrastructure similar to large-giant D-multipolar neurons present in other areas of the cochlear nucleus, from which they differ by the presence of a larger excitatory axo-somatic synaptic input and larger mitochondria. Octopus cells are glycine and GABA negative, and glutamate positive with different degree. Large octopus cells receive more axo-somatic boutons than smaller octopus cells. Fusiform octopus cells are found sparsely within the intermediate acoustic striae. These cells are large to giant excitatory neurons (23-35 microm) with 62-85% of their irregular perimeter covered with large axo-somatic synaptic boutons. Most boutons contain round vesicles and are glycine and GABA negative but glutamate positive. The latter excitatory boutons represent about 70% of the input to octopus cells. Glycine positive boutons with flat and pleomorphic vesicles account for 9-10% of the input while GABA-ergic boutons with pleomorphic vesicles represent about 20% of the synaptic input. Other few, multipolar cells within the rat octopus cell area are surrounded by more inhibitory than excitatory terminals which contain flat and pleomorphic vesicles, a feature distinctive from that of true octopus cells. The latter resemble multipolar cells seen outside the octopus cell area that project to the contralateral inferior colliculus and cochlear nucleus. Based on this study, two types of large multipolar cells are present in the octopus cell area: 1) those that receive about 70% of axo-somatic R boutons and stain more intensely for glutamate may correspond to pure onset neurons (Oi); 2) those with less than 33% of R axosomatic boutons, with less immunoreactivity to glutamate and sometimes glycine positive may represent the onset chopper neurons (Oc). In the octopus cell area the first type appears more prevalent. The present study suggests that octopus cells are a special type of excitatory D-multipolar neuron confined to the octopus cell area and mainly innervated by glutamatergic cochlear nerve terminals.[1]

References

 
WikiGenes - Universities