The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mrs2p is an essential component of the major electrophoretic Mg2+ influx system in mitochondria.

Steady-state concentrations of mitochondrial Mg(2+) previously have been shown to vary with the expression of Mrs2p, a component of the inner mitochondrial membrane with two transmembrane domains. While its structural and functional similarity to the bacterial Mg(2+) transport protein CorA suggested a role for Mrs2p in Mg(2+) influx into the organelle, other functions in cation homeostasis could not be excluded. Making use of the fluorescent dye mag-fura 2 to measure free Mg(2+) concentrations continuously, we describe here a high capacity, rapid Mg(2+) influx system in isolated yeast mitochondria, driven by the mitochondrial membrane potential Deltapsi and inhibited by cobalt(III)hexaammine. Overexpression of Mrs2p increases influx rates 5-fold, while the deletion of the MRS2 gene abolishes this high capacity Mg(2+) influx. Mg(2+) efflux from isolated mitochondria, observed with low Deltapsi only, also requires the presence of Mrs2p. Cross-linking experiments revealed the presence of Mrs2p-containing complexes in the mitochondrial membrane, probably constituting Mrs2p homo- oligomers. Taken together, these findings characterize Mrs2p as the first molecularly identified metal ion channel protein in the inner mitochondrial membrane.[1]

References

  1. Mrs2p is an essential component of the major electrophoretic Mg2+ influx system in mitochondria. Kolisek, M., Zsurka, G., Samaj, J., Weghuber, J., Schweyen, R.J., Schweigel, M. EMBO J. (2003) [Pubmed]
 
WikiGenes - Universities