The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Genetically targeted radiotherapy for multiple myeloma.

Multiple myeloma is a disseminated neoplasm of terminally differentiated plasma cells that is incurable with currently available therapies. Although the disease is radiosensitive, external beam radiation leads to significant toxicity due to sensitive end-organ damage. Thus, genetic approaches for therapy are required. We hypothesized that the incorporation of immunoglobulin promoter and enhancer elements in a self-inactivating (SIN) lentiviral vector should lead to specific and high-level transgene expression in myeloma cells. A SIN lentivector with enhanced green fluorescent protein (EGFP) expression under the control of a minimal immunoglobulin promoter as well as the Kappa light chain intronic and 3' enhancers transduced myeloma cell lines with high efficiency (30%-90%). EGFP was expressed at a high level in myeloma cells but silent in all nonmyeloma cell lines tested compared with the cytomegalovirus (CMV) promoter/enhancer. Transduction of myeloma cells with the targeted vector coding for the human sodiumiodide symporter (hNIS) led to hNIS expression by these cells allowing them to concentrate radioiodine up to 18-fold compared with controls. Tumor xenografts in severe combined immunodeficiency mice expressing hNIS could be imaged using iodine-123 (123I) and shown to retain iodide for up to 48 hours. These tumor xenografts were completely eradicated by a single dose of the therapeutic isotope iodine-131 (131I) without evidence of recurrence up to 5 months after therapy. We conclude that lentivectors can be transcriptionally targeted for myeloma cells and the use of hNIS as a therapeutic gene for myeloma in combination with 131I needs further exploration.[1]

References

  1. Genetically targeted radiotherapy for multiple myeloma. Dingli, D., Diaz, R.M., Bergert, E.R., O'Connor, M.K., Morris, J.C., Russell, S.J. Blood (2003) [Pubmed]
 
WikiGenes - Universities