The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Ionizing radiation-induced Rad51 nuclear focus formation is cell cycle-regulated and defective in both ATM(-/-) and c-Abl(-/-) cells.

In eukaryotes, DNA double-strand breaks (DSBs) can be repaired by either non-homologous end-joining (NHEJ) or homologous recombination (HR) pathways. Rad50 protein is a component of the Rad50/NBS1/Mre11 nuclease complex that functions in both the NHEJ and recombinational repair of DNA DSBs. On the other hand, Rad51 protein, a homolog of bacterial RecA and a member of the Rad52 epistasis group, plays a crucial role exclusively in the recombinational repair pathway. We analyzed the effects of cell cycle progression and genetic background on the ionizing radiation (IR)-induced Rad51 and Rad50 repair focus formation. Herein, we demonstrated that IR-induced Rad51, but not Rad50, nuclear focus formation was cell cycle-dependent. Furthermore, IR-induced Rad51 focus formation was defective in AT and c-Abl(-/-) cells, but not wild type or NBS cells. A decreased and delayed formation of Rad51 foci-containing nuclei was observed in AT cells upon IR, whereas in c-Abl(-/-) cells a decreased but not delayed formation of Rad51 foci-containing nuclei was observed. In conclusion, effective and prompt IR-induced Rad51 focus formation is cell cycle-regulated and requires both ATM and c-Abl.[1]

References

 
WikiGenes - Universities