The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Substrate recognition by nucleotide sugar transporters: further characterization of substrate recognition regions by analyses of UDP-galactose/CMP-sialic acid transporter chimeras and biochemical analysis of the substrate specificity of parental and chimeric transporters.

Human UDP-Gal transporter 1 ( hUGT1) and the human CMP-Sia transporter (hCST) are similar in structure, with amino acid sequences that are 43% identical, but they have quite distinct transport substrates. To define their substrate recognition regions, we constructed various chimeras between the two transporters and demonstrated that distinct submolecular regions of the transporter molecules are involved in the specific recognition of UDP-Gal and CMP-Sia (Aoki, K., Ishida, N., and Kawakita, M. (2001) J. Biol. Chem. 276, 21555-21561). In a further attempt to define the minimum submolecular regions required for the recognition of specific substrates, we found that substitution of helix 7 of hCST into the corresponding part of hUGT1 was necessary and sufficient for a chimera to show CST activity. Additional replacement of helix 2 or 3 of hUGT1 with the corresponding hCST sequence markedly increased the efficiency of CMP-Sia transport. For UGT activity, helices 1 and 8 of hUGT1 were necessary (but not sufficient), and helices 9 and 10 or helices 2, 3, and 7 derived from hUGT1 were also required to render the chimera competent for UDP-Gal transport. The in vitro analyses of a chimera with dual specificity indicated that it transported both UMP and CMP and mediated exchange reactions between these nucleotides and nucleotide sugars that are recognized specifically by either of the parental transporters.[1]

References

 
WikiGenes - Universities