The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme "Wiring" hydrogels.

A redox hydrogel with an apparent electron diffusion coefficient (D(app)) of (5.8 +/- 0.5) x 10(-)(6) cm(2) s(-)(1) is described. The order of magnitude increase in D(app) relative to previously studied redox hydrogels results from the tethering of redox centers to the backbone of the cross-linked redox polymer backbone through 13 atom spacer arms. The long and flexible tethers allow the redox centers to sweep electrons from large-volume elements and to collect electrons of glucose oxidase efficiently. The spacer arms make the collection of electrons from glucose oxidase so efficient that glucose is electrooxidized already at -0.36 V versus Ag/AgCl, the reversible potential of the redox potential of the FAD/FADH(2) centers of the enzyme at pH 7. 2. The limiting current density of 1.15 mA cm(-)(2) is reached at a potential as low as -0.1 V versus Ag/AgCl. The novel redox center of the polymer is a tris-dialkylated N,N'-biimidazole Os(2+/3+) complex. Its redox potential, -0.195 V versus Ag/AgCl, is 0.8 V reducing relative to that of Os(bpy)(2+/3+), its 2,2'-bipyridine analogue.[1]

References

 
WikiGenes - Universities