The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Targeted deletion of histidine decarboxylase gene in mice increases bone formation and protects against ovariectomy-induced bone loss.

Targeted disruption of the histidine decarboxylase gene (HDC(-/-)), the only histamine-synthesizing enzyme, led to a histamine-deficient mice characterized by undetectable tissue histamine levels, impaired gastric acid secretion, impaired passive cutaneous anaphylaxis, and decreased mast cell degranulation. We used this model to study the role of histamine in bone physiology. Compared with WT mice, HDC(-/-) mice receiving a histamine-free diet had increased bone mineral density, increased cortical bone thickness, higher rate of bone formation, and a marked decrease in osteoclasts. After ovariectomy, cortical and trabecular bone loss was reduced by 50% in HDC(-/-) mice compared with WT. Histamine deficiency protected the skeleton from osteoporosis directly, by inhibiting osteoclastogenesis, and indirectly, by increasing calcitriol synthesis. Quantitative RT-PCR showed elevated 25-hydroxyvitamin D-1alpha-hydroxylase and markedly decreased 25-hydroxyvitamin D-24-hydroxylase mRNA levels. Serum parameters confirming this indirect effect included elevated calcitriol, phosphorus, alkaline phosphatase, and receptor activator of NF-kappaB ligand concentrations, and suppressed parathyroid hormone concentrations in HDC(-/-) mice compared with WT mice. After ovariectomy, histamine-deficient mice were protected from bone loss by the combination of increased bone formation and reduced bone resorption.[1]

References

  1. Targeted deletion of histidine decarboxylase gene in mice increases bone formation and protects against ovariectomy-induced bone loss. Fitzpatrick, L.A., Buzas, E., Gagne, T.J., Nagy, A., Horvath, C., Ferencz, V., Mester, A., Kari, B., Ruan, M., Falus, A., Barsony, J. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
 
WikiGenes - Universities