The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Zinc-induced PTEN protein degradation through the proteasome pathway in human airway epithelial cells.

The tumor suppressor PTEN is a putative negative regulator of the phosphatidylinositol 3-kinase/Akt pathway. Exposure to Zn2+ ions induces Akt activation, suggesting that PTEN may be modulated in this process. Therefore, the effects of Zn2+ on PTEN were studied in human airway epithelial cells and rat lungs. Treatment with Zn2+ resulted in a significant reduction in levels of PTEN protein in a dose- and time-dependent fashion in a human airway epithelial cell line. This effect of Zn2+was also observed in normal human airway epithelial cells in primary culture and in rat airway epithelium in vivo. Concomitantly, levels of PTEN mRNA were also significantly reduced by Zn2+ exposure. PTEN phosphatase activity evaluated by measuring Akt phosphorylation decreased after Zn2+ treatment. Pretreatment of the cells with a proteasome inhibitor significantly blocked zinc-induced reduction of PTEN protein as well as the increase in Akt phosphorylation, implicating the involvement of proteasome-mediated PTEN degradation. Further study revealed that Zn2+-induced ubiquitination of PTEN protein may mediate this process. A phosphatidylinositol 3-kinase inhibitor blocked PTEN degradation induced by Zn2+, suggesting that phosphatidylinositol 3-kinase may participate in the regulation of PTEN. However, both the proteasome inhibitor and phosphatidylinositol 3-kinase inhibitor failed to prevent significant down-regulation of PTEN mRNA expression in response to Zn2+. In summary, exposure to Zn2+ ions causes PTEN degradation and loss of function, which is mediated by an ubiquitin-associated proteolytic process in the airway epithelium.[1]

References

  1. Zinc-induced PTEN protein degradation through the proteasome pathway in human airway epithelial cells. Wu, W., Wang, X., Zhang, W., Reed, W., Samet, J.M., Whang, Y.E., Ghio, A.J. J. Biol. Chem. (2003) [Pubmed]
 
WikiGenes - Universities