The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Role of oleic acid as a neurotrophic factor is supported in vivo by the expression of GAP-43 subsequent to the activation of SREBP-1 and the up-regulation of stearoyl-CoA desaturase during postnatal development of the brain.

We have recently reported that albumin, a serum protein present in the developing brain, stimulates the synthesis of oleic acid by cultured astrocytes by inducing stearoyl-CoA 9-desaturase, the rate-limiting enzyme in oleic acid synthesis, through activation of the sterol regulatory element-binding protein-1. In this work, we offer evidence supporting the in vivo occurrence of this process during the postnatal development of the rat brain. Our results show that albumin reaches maximal brain level by day 1 after birth, coinciding with activation of the sterol response element binding protein-1, which is responsible for the transcription of the enzymes required for oleic acid synthesis. In addition, the developmental profile of stearoyl-CoA 9-desaturase-1 mRNA expression follows that of sterol regulatory element-binding protein-1 activation, indicating that these phenomena are tightly linked. In a previous work, we showed that oleic acid induces neuronal differentiation, as indicated by the expression of growth associated protein-43. Here, we report that the expression of growth associated protein-43 mRNA peaks at about day 7 after birth, following the maximal expression of stearoyl-CoA 9-desaturase-1 mRNA that occurs between days 3 and 5 postnatally. In conclusion, our results support the hypothesis that the synthesis of oleic acid is linked to neuronal differentiation during rat brain development.[1]

References

 
WikiGenes - Universities