Alpha-synuclein protects naive but not dbcAMP-treated dopaminergic cell types from 1-methyl-4-phenylpyridinium toxicity.
The pre-synaptic protein, alpha-synuclein, has been associated with the pathogenesis of Parkinson's disease. The present study indicates that alpha-synuclein, but not its mutants (A53T, A30P), can protect CNS dopaminergic cells from the parkinsonism-inducing drug 1-methyl-4-phenylpyridinium ( MPP+), whereas it cannot protect from the dopaminergic toxin, 6-hydroxydopamine, hydrogen-peroxide, or the beta-amyloid peptide, A-beta. Protection from MPP+ was directly correlated with the preservation of mitochondrial function. Specifically, alpha-synuclein rescued cells from MPP+ mediated decreases in mitochondrial dehydrogenase activity and loss of ATP levels by utilizing ketosis. It also prevented toxin-induced activation of the creatine kinase/creatine phosphate system. Similarly, alpha-synuclein protected cells from the complex I inhibitor rotenone and 3-nitroproprionic acid, a complex II inhibitor. Wild-type alpha-synuclein-mediated neuroprotection and subsequent alterations in energy were not found in dbcAMP-differentiated cells. These results suggest that the normal physiological role for alpha-synuclein may change during development.[1]References
- Alpha-synuclein protects naive but not dbcAMP-treated dopaminergic cell types from 1-methyl-4-phenylpyridinium toxicity. Jensen, P.J., Alter, B.J., O'Malley, K.L. J. Neurochem. (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg