The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Pregnancy in mice lacking the vitamin D receptor: normal maternal skeletal response, but fetal hypomineralization rescued by maternal calcium supplementation.

Fetal mineralization appears to be driven by the pregnancy-induced stimulation of intestinal Ca absorption. We thus hypothesized that mineralization would be impaired in fetuses of mice that lack the vitamin D receptor (VDR). Here we report on the maternal response to pregnancy, and the fetal mineralization, in mice with a homozygous disruption of the VDR gene (VDR-/-) mated with wild-type (wt) males. We found that VDR-/- mice show mild hypocalcemia, clear rickets and osteomalacia on bone histomorphometry, lower cortical bone density on quantitative tomography, and reduced concentrations of calbindin-D9k (CaBP-D9k) in duodenal mucosa and kidney. The skeletal response to pregnancy was comparable in wt and VDR-/- mice; duodenal CaBP-D9k concentrations increased during pregnancy in VDR-/- as in wt mice, but remained 40% lower than in wt mice. We confirmed our hypothesis that mineralization is defective in d18.5 VDR+/- fetuses of VDR-/- mice, both by whole-body Ca determination and histomorphometric evaluation; the number of osteoclastic cells in bone was increased. The fetuses were hypercalcemic and had a 5-fold increase in circulating 1,25(OH)2D3. We then studied pregnancies in VDR-/- females, mated with wt males, fed a high Ca/P/lactose rescue diet during pregnancy. The rescue diet normalized the mineralization, the number of osteoclastic cells, and plasma Ca and 1,25(OH)2D3 concentrations in the fetuses. We interpret the data as evidence that, to ensure normal fetal mineralization, the maternal VDR-dependent intestinal Ca absorption can be substituted by passive Ca absorption entrained by a higher Ca intake. Alternatively or additionally, elevated 1,25(OH)2D3 in utero may disturb bone development.[1]

References

  1. Pregnancy in mice lacking the vitamin D receptor: normal maternal skeletal response, but fetal hypomineralization rescued by maternal calcium supplementation. Rummens, K., van Cromphaut, S.J., Carmeliet, G., van Herck, E., van Bree, R., Stockmans, I., Bouillon, R., Verhaeghe, J. Pediatr. Res. (2003) [Pubmed]
 
WikiGenes - Universities