The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Deficiency of kinase suppressor of Ras1 prevents oncogenic ras signaling in mice.

In Drosophila and Caenorhabditis elegans, kinase suppressor of ras ( KSR) positively modulates Ras/Raf- mitogen-activated protein kinase ( MAPK) signaling. The precise signaling mechanism of mammalian KSR1 and its role in Ras-mediated transformation, however, remain uncertain. To gain insight into KSR1 function in vivo, we generated mice homozygous null for KSR1. ksr1-/- mice are viable and without major developmental defects. However, an unusual disorganized hair follicle phenotype manifest in epidermal growth factor receptor knockout mice is recapitulated in ksr1-/- mice, providing genetic support for the notion that epidermal growth factor receptor, Ras, and KSR1 are on the same signaling pathway in mammals. Furthermore, ksr1-/- mice allow for the definition of KSR1-dependent and -independent mechanisms of c-Raf-1 activation. In embryonic fibroblasts, epidermal growth factor and 12-O-tetradecanoylphorbol-13-acetate activated the MAPK cascade to a similar extent, yet only c-Raf-1 activation by epidermal growth factor depended on KSR1. Moreover, whereas the genesis of polyomavirus middle T antigen (MT)-driven mammary cancer appears independent of KSR1, KSR1 is obligate for v-Ha-ras-mediated skin tumor formation. The growth of MT-driven mammary tumor was moderately slowed in ksr1-/- mice, however, consistent with a decreased rate of proliferation of ksr1-/- cells (T cells and embryonic fibroblasts). Nonetheless, all ksr1-/- animals succumbed to mammary cancer. In contrast, papilloma formation in Tg.AC mice, resulting from skin-specific v-Ha-ras expression, was completely abrogated in the ksr1-/- background. Hence, MT-driven mammary tumor genesis, which is signaled through src and phosphatidylinositol 3'-kinase, appears KSR1 independent, whereas v-Ha-ras-mediated skin cancer, signaled through the Raf-1/ MAPK cascade, requires KSR1. These results suggest KSR1 may represent a therapeutic target for Ras/ MAPK signaling of human tumorigenesis.[1]


  1. Deficiency of kinase suppressor of Ras1 prevents oncogenic ras signaling in mice. Lozano, J., Xing, R., Cai, Z., Jensen, H.L., Trempus, C., Mark, W., Cannon, R., Kolesnick, R. Cancer Res. (2003) [Pubmed]
WikiGenes - Universities