The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Dietary phylloquinone depletion and repletion in older women.

Biological markers indicative of poor vitamin K status have been associated with a greater risk for hip fracture in older men and women. However, the dietary phylloquinone intake required to achieve maximal carboxylation of hepatic and extrahepatic vitamin K-dependent proteins is not known. In an 84-d study in a metabolic unit, 21 older (60-80 y) women were fed a phylloquinone-restricted diet (18 micro g/d) for 28 d, followed by stepwise repletion of 86, 200 and 450 micro g/d of phylloquinone. Plasma phylloquinone, urinary gamma-carboxyglutamic acid excretion and gamma-carboxylation of hepatic (prothrombin) and extrahepatic proteins (osteocalcin) decreased in response to phylloquinone restriction (P < 0.001), demonstrating the production of subclinical vitamin K deficiency. The gamma-carboxylation of prothrombin was restored to normal levels in response to phylloquinone supplementation at 200 micro g/d. In contrast, all other biochemical markers of vitamin K status remained below normal levels after short-term supplementation of up to 450 micro g/d of phylloquinone. These data support previous observations in rats that hepatic vitamin K-dependent proteins have preferential utilization of phylloquinone in response to phylloquinone dietary restriction. Moreover, our findings suggest that the current recommended Adequate Intake levels of vitamin K (90 micro g/d) in women do not support maximal osteocalcin gamma-carboxylation in older women.[1]

References

  1. Dietary phylloquinone depletion and repletion in older women. Booth, S.L., Martini, L., Peterson, J.W., Saltzman, E., Dallal, G.E., Wood, R.J. J. Nutr. (2003) [Pubmed]
 
WikiGenes - Universities