The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 
 

Engineering physiologically regulated insulin secretion in non-beta cells by expressing glucagon-like peptide 1 receptor.

Glucagon-like peptide 1 (GLP-1) is released from neuroendocrine cells in the intestine in the postprandial state and augments glucose-stimulated insulin secretion from pancreatic beta cells. To develop non-beta cells that exhibit physiologically regulated insulin secretion, we coexpressed the GLP-1 receptor and human insulin in primary rat pituitary cells using adenovirus-mediated gene transfer. The transduced cells were analyzed in a perifusion system and after transplantation into mice. Normal pituitary cells do not express the GLP-1 receptor as shown by the absence of GLP-1 receptor mRNA and the inability of GLP-1 to stimulate pituitary hormone secretion. Following transduction with an adenovirus carrying the GLP-1 receptor cDNA, the pituitary cells expressed functional GLP-1 receptors as reflected by the ability of GLP-1 to stimulate secretion of pituitary hormones. When both the GLP-1 receptor and human insulin were introduced, GLP-1 stimulated cosecretion of human insulin and endogenous pituitary hormones. GLP-1 was similar in potency to the hypothalamic-releasing hormones and stimulated hormone secretion in a dose-dependent fashion. In contrast to pancreatic beta cells, the hormone-releasing effect of GLP-1 on transduced pituitary cells was not dependent on the concentration of extracellular glucose. After transplantation of pituitary cells coexpressing human insulin and GLP-1 receptor into mice, enteral glucose stimulated insulin secretion. These results demonstrate a new approach to engineer physiologically regulated insulin secretion by non-beta cells.[1]

References

  1. Engineering physiologically regulated insulin secretion in non-beta cells by expressing glucagon-like peptide 1 receptor. Wu, L., Nicholson, W., Wu, C.Y., Xu, M., McGaha, A., Shiota, M., Powers, A.C. Gene Ther. (2003) [Pubmed]
 
WikiGenes - Universities