The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Sphingophosphonolipid molecular species from edible mollusks and a jellyfish.

The goal of this study is to supplement the composition and nature of sphingophosphonolipids diversity from edible mollusks (Mytilus galloprovincialis, Eobania vermiculata) and from jellyfish Pelagia noctiluca, organisms rich in phosphonolipids. M. galloprovincialis contained a major ceramide 2-aminoethylphosphonate (CAEP-IM) and a minor ceramide that was detected chromatographically as the methyl analog (CAEP-IIM). In CAEP-IM, saturated fatty acids (FA) of 14, 16 and 18 carbons amounted to 68.8%; also 52.5% dihydroxy bases were detected. On thin layer chromatography, the Rf for CAEP-IIM was smaller than the Rf for CAEP-IM because of an increase of 22.0% in 2OH-16:0 FA, plus 29.2% trihydroxy bases (phytosphingosine). Similarly, a ceramide 2-methylaminoethylphosphonate (CAEP-IIE, 1.5% of phospholipids) was quantitated in Eobania (apart from the previously reported major CAEP, 7.6%). In CAEP-IIE, saturated and hydroxy FA of 14, 16 and 18 carbons amounted to 37.0 and 37.8%; 29.1% dihydroxy and 23.0% trihydroxy bases were detected in the same molecule. Eobania's unsaturated FA percentages (total lipids: 66.3, polar: 47.5, neutral: 59.0) were similar to those previously found for other land snails. A suite of two minor CAEP (CAEP-IIP, CAEP-IIIP) was quantitated in Pelagia at 2.0 and 1.3% of phospholipids (apart from the previously reported major CAEP, 21.0%) identified chromatographically as methyl analogs. In CAEP-IIP, saturated FA of 14, 16, 18 and 19 carbons amounted to 56.0%; 12.6% dihydroxy and 34.1% trihydroxy bases were also detected in CAEP-IIP. The Rf CAEP-IIIP<Rf CAEP-IIP owing to an increase of +8.5% of hydroxy FA and +12.3% of trihydroxy bases. The compositions of CAEP-IIM and CAEP-IIE appear to be specific of each organism, while the composition of molluscan or jellyfish major sphingophosphonolipids appears not specific.[1]

References

  1. Sphingophosphonolipid molecular species from edible mollusks and a jellyfish. Kariotoglou, D.M., Mastronicolis, S.K. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. (2003) [Pubmed]
 
WikiGenes - Universities