The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Genomic profiling identifies alterations in TGFbeta signaling through loss of TGFbeta receptor expression in human renal cell carcinogenesis and progression.

Renal cell carcinoma (RCC) is a major health issue. Whereas localized disease can be cured surgically, there is no effective therapy for metastatic disease. The development of an effective therapy will require an understanding of the pathways that are important in RCC carcinogenesis and progression. Using genomic profiling of patient-matched tissue, we have identified aberrations in the transforming growth factor beta (TGFbeta) signaling pathway in RCC. We observed loss of type III TGFbeta receptor (TBR3) expression in all RCC samples. This suggests that TBR3 loss is an early event in RCC carcinogenesis and plays a sentinel role in the acquisition of a tumorigenic phenotype. We also observed subsequent loss of type II TGFbeta receptor (TBR2) expression in metastatic RCCs. We propose that loss of TBR3 is necessary for RCC carcinogenesis, and that loss of TBR2 leads to acquisition of a metastatic phenotype. To this end, we have identified a human renal cell carcinoma line (UMRC6) that is representative of localized, nonmetastatic RCC, reflecting a loss of TBR3, but not TBR2 expression. Another cell line, UMRC3, is highly metastatic, having lost TBR3 and TBR2 expression. We demonstrate functional loss of TGFbeta responsiveness in these cell lines as observed through phenotypic and transcriptional responsiveness to exogenous TGFbeta. Restoring TBR2 and TBR3 expression in UMRC3 cells attenuates cell proliferation, completely restores TGFbeta-mediated transcriptional responses, and completely blocks anchorage independent-growth: while restoration of TBR2 partially restores TGFbeta-mediated signaling. Based on these data, we propose that dysregulation in TGFbeta signaling, through stepwise loss in receptor expression, plays a prominent role in RCC carcinogenesis and progression. In addition, these studies unequivocably demonstrate a link between loss of TBR3 and a human disease.[1]

References

  1. Genomic profiling identifies alterations in TGFbeta signaling through loss of TGFbeta receptor expression in human renal cell carcinogenesis and progression. Copland, J.A., Luxon, B.A., Ajani, L., Maity, T., Campagnaro, E., Guo, H., LeGrand, S.N., Tamboli, P., Wood, C.G. Oncogene (2003) [Pubmed]
 
WikiGenes - Universities