The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Synthesis of high-affinity, hydrophobic monosaccharide derivatives and study of their interaction with concanavalin A, the pea, the lentil, and fava bean lectins.

Concanavalin A (Con A) and agglutinins from the pea ( PSA), lentil ( LCH), and fava bean (VFA) constitute a group of D-mannose/D-glucose binding legume lectins. In addition to their sugar binding specificity, these lectins also contain sites that bind hydrophobic ligands. The present study explores a class of nonpolar binding sites reportedly present adjacent to the carbohydrate binding site in PSA, LCH, and VFA. A series of 2-O- and 3-O-substituted nitrobenzoyl and nitrobenzyl derivatives of methyl alpha-D-glucopyranoside and methyl alpha-D-mannopyranoside were synthesized. Evaluation of their binding to Con A, PSA, LCH, and VFA was carried out by the technique of hapten inhibition of precipitation reaction. The hapten inhibition assay results reveal that the presence of a methyl or methylene group at the O-2 or O-3 position of the sugar is essential for hydrophobic interaction with PSA, LCH, and VFA. The substitution of methyl by nitrobenzyl leads to enhanced binding (1.7-16.7 times for the 2-O-substituted compounds and 7.9-40.5 times for the 3-O-substituted compounds) with the m-nitrobenzyl group contributing to maximum binding. A hydrophobic interaction is also involved between Con A and 2-O-nitrobenzyl derivatives, resulting in enhanced binding, but the corresponding 3-O-isomers bind poorly due probably to steric reasons. These results may be rationalized on the basis of the recently published X-ray data of Con A and VFA. The nitrobenzyl derivatives, after transformation to their azido analogs, have potential applications in the photoaffinity labeling of these lectins.[1]

References

 
WikiGenes - Universities