The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Cloning and analysis of the entire Escherichia coli ams gene. ams is identical to hmp1 and encodes a 114 kDa protein that migrates as a 180 kDa protein.

We have used an antibody to a previously identified 180 kDa (Hmp1) protein in Escherichia coli to clone the corresponding gene, which encodes a polypeptide of 114 kDa that has a mobility equivalent to 180 kDa in SDS/PAGE. We have demonstrated that the 180 kDa polypeptide is the primary gene product and not due to aggregation with other molecules. Moreover, our data indicate that the highly charged C-terminal region of the protein is responsible for its anomalous behaviour when analysed by SDS/PAGE. The hmp1 gene is in fact identical to ams (abnormal mRNA stability), also designated rne (RnaseE), and reported to have an ORF of 91 kDa. This discrepancy with the data in this paper can be ascribed to the omission of two bases in the previously reported sequence, generating an apparent stop codon. We previously demonstrated that the 180 kDa Hmp1/Ams protein cross reacted with both a polyclonal antibody and a monoclonal antibody raised against a yeast heavy chain myosin. However, we could detect no homology with myosin genes in the ams/hmp1 sequence. From the DNA sequence data, we identified a putative nucleotide binding site and a transmembrane domain in the N-terminal half of the molecule. In the C-terminal half, which appears to constitute a separate domain dominated by proline and charged amino acids, we also identified a region homologous to the highly conserved 70 kDa snRNP protein, involved in RNA splicing in eukaryotes. This feature would be consistent with reports that ams encodes RNaseE, an enzyme required for the processing of several stable RNAs in E. coli.[1]

References

  1. Cloning and analysis of the entire Escherichia coli ams gene. ams is identical to hmp1 and encodes a 114 kDa protein that migrates as a 180 kDa protein. Casarégola, S., Jacq, A., Laoudj, D., McGurk, G., Margarson, S., Tempête, M., Norris, V., Holland, I.B. J. Mol. Biol. (1992) [Pubmed]
 
WikiGenes - Universities