The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Brostallicin (PNU-166196)--a new DNA minor groove binder that retains sensitivity in DNA mismatch repair-deficient tumour cells.

Defects in DNA mismatch repair (MMR) are associated with a predisposition to tumorigenesis and with drug resistance owing to high mutation rates and failure to engage DNA-damage-induced apoptosis. DNA minor groove binders (MGBs) are a class of anticancer agents highly effective in a variety of human cancers. Owing to their mode of action, DNA MGB-induced DNA damage may be a substrate for DNA MMR. This study was aimed at investigating the effect of loss of MMR on the sensitivity to brostallicin (PNU-166196), a novel synthetic alpha-bromoacrylic, second-generation DNA MGB currently in Phase II clinical trials and structurally related to distamycin A. Brostallicin activity was compared to a benzoyl mustard derivative of distamycin A (tallimustine). We report that the sensitivities of MLH1-deficient and -proficient HCT116 human colon carcinoma cells were comparable after treatment with brostallicin, while tallimustine resulted in a three times lower cytotoxicity in MLH1-deficient than in -proficient cells. MSH2-deficient HEC59 parental endometrial adenocarcinoma cells were as sensitive as the proficient HEC59+ch2 cells after brostallicin treatment, but were 1.8-fold resistant after tallimustine treatment as compared to the MSH2-proficient HEC59+ch2 counterpart. In addition, p53-deficient mouse fibroblasts lacking PMS2 were as sensitive to brostallicin as PMS2-proficient cells, but were 1.6-fold resistant to tallimustine. Loss of neither ATM nor DNA-PK affected sensitivity to brostallicin in p53-deficient mouse embryonic fibroblasts, indicating that brostallicin-induced cytotoxicity in a p53-deficient genetic background does not seem to require these kinases. These data show that, unlike other DNA MGBs, MMR-deficient cells retain their sensitivity to this new alpha-bromoacrylic derivative, indicating that brostallicin-induced cytotoxicity does not depend on functional DNA MMR. Since DNA MMR deficiency is common in numerous types of tumours, brostallicin potentially offers the advantage of being effective against MMR-defective tumours that are refractory to several anticancer agents.[1]


  1. Brostallicin (PNU-166196)--a new DNA minor groove binder that retains sensitivity in DNA mismatch repair-deficient tumour cells. Fedier, A., Fowst, C., Tursi, J., Geroni, C., Haller, U., Marchini, S., Fink, D. Br. J. Cancer (2003) [Pubmed]
WikiGenes - Universities