The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Combined therapy with direct and indirect angiogenesis inhibition results in enhanced antiangiogenic and antitumor effects.

The multifaceted nature of the angiogenic process in malignant neoplasms suggests that protocols that combine antiangiogenic agents may be more effective than single-agent therapies. However it is unclear which combination of agents would be most efficacious and will have the highest degree of synergistic activity while maintaining low overall toxicity. Here we investigate the concept of combining a "direct" angiogenesis inhibitor (endostatin) with an "indirect" antiangiogenic compound [SU5416, a vascular endothelial growth factor receptor 2 (VEGFR2) receptor tyrosine kinase (RTK) inhibitor]. These angiogenic agents were more effective in combination than when used alone in vitro (endothelial cell proliferation, survival, migration/invasion, and tube formation tests) and in vivo. The combination of SU5416 and low-dose endostatin further reduced tumor growth versus monotherapy in human prostate ( PC3), lung (A459), and glioma ( U87) xenograft models, and reduced functional microvessel density, tumor microcirculation, and blood perfusion as detected by intravital microscopy and contrast-enhanced Doppler ultrasound. One plausible explanation for the efficacious combination could be that, whereas SU5416 specifically inhibits vascular endothelial growth factor signaling, low-dose endostatin is able to inhibit a broader spectrum of diverse angiogenic pathways directly in the endothelium. The direct antiangiogenic agent might be able to suppress alternative angiogenic pathways up-regulated by the tumor in response to the indirect, specific pathway inhibition. For future clinical evaluation of the concept, a variety of agents with similar mechanistic properties could be tested.[1]

References

  1. Combined therapy with direct and indirect angiogenesis inhibition results in enhanced antiangiogenic and antitumor effects. Abdollahi, A., Lipson, K.E., Sckell, A., Zieher, H., Klenke, F., Poerschke, D., Roth, A., Han, X., Krix, M., Bischof, M., Hahnfeldt, P., Grone, H.J., Debus, J., Hlatky, L., Huber, P.E. Cancer Res. (2003) [Pubmed]
 
WikiGenes - Universities