Glutamate excitotoxicity attenuates insulin-like growth factor-I prosurvival signaling.
Recent evidence suggests that impaired insulin/insulin-like growth factor I (IGF-I) input may be associated to neurodegeneration. Several major neurodegenerative diseases involve excitotoxic cell injury whereby excess glutamate signaling leads to neuronal death. Recently it was shown that glutamate inactivates Akt, a serine-kinase crucially involved in the prosurvival actions of IGF-I. We now report that excitotoxic doses of glutamate antagonize Akt activation by IGF-I and inhibit the neuroprotective effects of this growth factor on cultured neurons. Glutamate induces loss of sensitivity to IGF-I by phosphorylating the IGF-I receptor docking protein insulin-receptor-substrate (IRS)-1 in Ser(307) through a pathway involving activation of PKA and PKC in a hierarchical fashion. Administration of Ro320432, a selective PKC inhibitor, abrogates the inhibitory effects of glutamate on IGF-I-induced Akt activation in vitro and in vivo and is sufficient to block the neurotoxic action of glutamate on cultured neurons. Notably, administration of Ro320432 after ischemic insult, a major form of excitotoxic injury in vivo, results in a marked decrease ( approximately 50%) in infarct size. Therefore, uncoupling of IGF-I signaling by glutamate may constitute an additional route contributing to excitotoxic neuronal injury. Further work should determine the potential use of PKC inhibitors as a novel therapeutic strategy in ischemia and other excitotoxic insults.[1]References
- Glutamate excitotoxicity attenuates insulin-like growth factor-I prosurvival signaling. Garcia-Galloway, E., Arango, C., Pons, S., Torres-Aleman, I. Mol. Cell. Neurosci. (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









