The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Lipopolysaccharide attenuates thrombolysis in batroxobin-induced lung vasculature fibrin deposition but not in ferrous chloride-induced carotid artery thrombus in rats: role of endogenous PAI-1.

In this study, we investigated if elevation of endogenous plasminogen activator inhibitor type 1 (PAI-1) by lipopolysaccharide (LPS) can retard thrombolysis in both a rat model of lung vasculature fibrin deposition and a platelet-rich thrombus model induced by endothelial injury. By 3 h following an intravenous bolus injection of 0.5 mg/kg LPS, the plasma PAI-1 level had increased to approximately 8 ng/ml. 125I-labeled fibrinogen was injected intravenously followed by an injection of batroxobin. Batroxobin converts fibrinogen into insoluble fibrin, which was then deposited in the lungs within 5 min, followed by spontaneous fibrinolysis that completely cleared fibrin deposition in the lungs by 30 min. In rats pre-treated with LPS, spontaneous fibrinolysis was significantly retarded. In the endothelial injury model, topical application of FeCl2 on the carotid artery induced an occlusive platelet-rich thrombus, which was not sensitive to endogenous thrombolysis. Exogenous tissue-type plasminogen activator (tPA) was required to recanalize the occlusive thrombus in a dose-dependent manner. Pre-treatment with LPS did not alter the dose-response curve of exogenous tPA-induced thrombolysis. These data indicate that batroxobin-induced lung vasculature fibrin deposition in rats, unlike the FeCl2 model, is sensitive to the impact of endogenous PAI-1 on fibrinolysis.[1]

References

  1. Lipopolysaccharide attenuates thrombolysis in batroxobin-induced lung vasculature fibrin deposition but not in ferrous chloride-induced carotid artery thrombus in rats: role of endogenous PAI-1. Wang, Y.X., Dong, N., Wu, C., Martin-McNulty, B., Fitch, R.M., da Cunha, V., Vicelette, J., Tran, K., Vergona, R., Sullivan, M.E., Morser, J., Wu, Q. Thromb. Res. (2003) [Pubmed]
 
WikiGenes - Universities