The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Development of vimentin and glial fibrillary acidic protein immunoreactivities in the brain of gray mullet (Chelon labrosus), an advanced teleost.

Previous studies in teleosts have revealed the presence of the intermediate filaments vimentin (Vim) and glial fibrillary acidic protein (GFAP) in glial cells of the spinal cord and/or some brain regions, but there is no comprehensive study of their distribution and developmental changes in fishes. Here, the distribution of Vim and GFAP immunoreactivities was studied in the brain of larvae, juveniles, and adults of an advanced teleost, the gray mullet (Chelon labrosus). A different sequence of appearance was observed for expression of these proteins: Vim levels decreased with age, whereas GFAP increased. In general, both immunoreactivities were expressed early in perikarya and endfeet of ependymocytes (tanycytes), whereas expression in radial processes appeared later. In large larvae, the similar expression patterns of Vim and GFAP suggest that some of these glial cells contain both proteins. Subependymal radial glia cells were observed mainly in the optic tectum, exhibiting Vim and GFAP immunoreactivity. The only immunoreactive cells with astrocyte-like morphology were observed in the optic chiasm of the adult, and they were positive for both GFAP and Vim. The perivascular processes of glial cells showed a different distribution of Vim and GFAP during development and had a caudorostral sequence of appearance of immunoreactivities similar to that observed for ependymal and radial glia cells. Several circumventricular organs (the organon vasculosum hypothalami, saccus vasculosus, and area postrema) exhibited highly specialized Vim- and/or GFAP-expressing glial cells. The glial cells of the midline septa of several brain regions were also Vim and/or GFAP immunoreactive. In the adult brain, tanycytes retain Vim expression in several brain regions. As in other vertebrates, the regions with Vim-immunoreactive ventricular and midline glia may represent areas with the capability of plasticity and regeneration in adult brain.[1]

References

 
WikiGenes - Universities