The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Caffeic acid esters activate TREK-1 potassium channels and inhibit depolarization-dependent secretion.

In whole-cell and single-channel patch-clamp recordings from bovine adrenal fasciculata cells, it was discovered that selected caffeic acid derivatives dramatically enhanced the activity of background TREK-1 K+ channels. Cinnamyl 1-3,4-dihydroxy-alpha-cyanocinnamate (CDC), activated TREK-1 when this agent was applied externally to cells or outside-out patches at concentrations of 5 to 10 microM. Structure/activity studies showed that native bTREK-1 channels were also activated by other caffeic acid esters, including caffeic acid phenethyl ester (CAPE), which contain a benzene or furan ring in the ester side chain. The activation of bTREK-1 by caffeic acid derivatives did not occur through inhibition of lipoxygenases because other potent lipoxygenase inhibitors failed to activate bTREK-1. In bovine adrenal zona fasciculata (AZF) cells, bTREK-1 K+ channels set the resting membrane potential. Inhibition of these channels by corticotropin leads to depolarization-dependent Ca2+ entry and cortisol secretion. CDC, which activates up to thousands of dormant bTREK-1 channels in AZF cells, was found to overwhelm the inhibition of bTREK-1 by corticotropin, reverse the membrane depolarization, and inhibit corticotropin-stimulated cortisol secretion. These results identify selected caffeic acid derivatives as novel K+ channel openers that activate TREK-1 background K+ channels. Because of their ability to stabilize the resting membrane potential and oppose electrical activity and depolarization-dependent Ca2+ entry, these compounds may have therapeutic potential as neuroprotective or cardioprotective agents.[1]


WikiGenes - Universities