The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Mechanism of methoxide ion substitution in the z and e isomers of o-methylbenzohydroximoyl halides.

Kinetics and stereochemical studies have been carried out on the reactions of the Z and E isomers of O-methylbenzohydroximoyl halides [1Z and 1E, ArC(X)=NOCH(3)] with sodium methoxide in 9:1 DMSO-methanol. The reactions of methoxide ion with hydroximoyl fluorides (X = F) are stereospecific. The reaction with 1Z (X = F) gives only the Z substitution product (1Z, X =OCH(3)). The reaction of methoxide ion with 1E (X = F) is less selective, giving ca. 85% E substitution product. The Hammett rho-values for the Z and E isomers (X = F) are +2.94 and +3.30, respectively. The element effects for 1Z (Ar = C(6)H(5)) are 2.21 (X = Br):1.00 (X = Cl):79.7 (X = F). The 1E element effects are (Ar = C(6)H(5)) 1.00 (X = Cl):18.3 (X = F) and (Ar = 4-CH(3)OC(6)H(4)) 1.97 (X = Br):1.00 (X = Cl):12.1 (X = F). The entropies of activation for these reactions are negative (for example, DeltaS() = -15 eu for 1Z and DeltaS() = -14 eu for 1E, Ar = 4-CH(3)OC(6)H(4), X = F). These experimental observations are consistent with a mechanism proceeding through a tetrahedral intermediate. Ab initio calculations were carried out to help explain the stereospecificity of these reactions. These calculations indicate that the tetrahedral intermediate from the Z isomer undergoes rapid elimination to the Z substitution product before stereomutation can take place. These calculations also show that the lowest barrier for rotation around the carbon-nitrogen single bond in the tetrahedral intermediate derived from 1E leads to an intermediate that eliminates fluoride ion to give E product.[1]

References

  1. Mechanism of methoxide ion substitution in the z and e isomers of o-methylbenzohydroximoyl halides. Johnson, J.E., Dolliver, D.D., Yu, L., Canseco, D.C., McAllister, M.A., Rowe, J.E. J. Org. Chem. (2004) [Pubmed]
 
WikiGenes - Universities