The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Postmortem molecular screening in unexplained sudden death.

OBJECTIVES: We examined the prevalence of defects in arrhythmia-related candidate genes among patients with unexplained sudden cardiac death (SCD). BACKGROUND: Patients with unexplained sudden death may constitute up to 5% of overall SCD cases. For such patients, systematic postmortem genetic analysis of archived tissue, using a candidate gene approach, may identify etiologies of SCD. METHODS: We performed analysis of KCNQ1 (KVLQT1), KCNH2 (HERG), SCN5A, KCNE1, and KCNE2 defects in a subgroup of 12 adult subjects with unexplained sudden death, derived from a 13-year, 270-patient autopsy series of SCD. Archived, paraffin-embedded myocardial tissue blocks obtained at the original postmortem examination were the source of deoxyribonucleic acid for genetic analysis. RESULTS: Two patients were found to have the same HERG defect, a missense mutation in exon 7 (nucleotide change G1681A, coding effect A561T). The mutation was heterozygous in Patient 1, but Patient 2 appeared to be homozygous for the defect. Patch-clamp recordings showed that the A561T mutant channel expressed in human embryonic kidney cells failed to generate HERG current. Western blot analysis implicated a trafficking defect in the protein, resulting in loss of post-translational processing from the immature to the mature form of HERG. No mutations were detected among the remaining four candidate genes. CONCLUSIONS: In this autopsy series, only 2 of 12 patients with unexplained sudden death were observed to have a defect in HERG among five candidate genes tested. It is likely that elucidation of SCD mechanisms in such patients will await the discovery of multiple, novel arrhythmia-causing gene defects.[1]

References

  1. Postmortem molecular screening in unexplained sudden death. Chugh, S.S., Senashova, O., Watts, A., Tran, P.T., Zhou, Z., Gong, Q., Titus, J.L., Hayflick, S.J. J. Am. Coll. Cardiol. (2004) [Pubmed]
 
WikiGenes - Universities