Postmortem molecular screening in unexplained sudden death.
OBJECTIVES: We examined the prevalence of defects in arrhythmia-related candidate genes among patients with unexplained sudden cardiac death (SCD). BACKGROUND: Patients with unexplained sudden death may constitute up to 5% of overall SCD cases. For such patients, systematic postmortem genetic analysis of archived tissue, using a candidate gene approach, may identify etiologies of SCD. METHODS: We performed analysis of KCNQ1 (KVLQT1), KCNH2 (HERG), SCN5A, KCNE1, and KCNE2 defects in a subgroup of 12 adult subjects with unexplained sudden death, derived from a 13-year, 270-patient autopsy series of SCD. Archived, paraffin-embedded myocardial tissue blocks obtained at the original postmortem examination were the source of deoxyribonucleic acid for genetic analysis. RESULTS: Two patients were found to have the same HERG defect, a missense mutation in exon 7 (nucleotide change G1681A, coding effect A561T). The mutation was heterozygous in Patient 1, but Patient 2 appeared to be homozygous for the defect. Patch-clamp recordings showed that the A561T mutant channel expressed in human embryonic kidney cells failed to generate HERG current. Western blot analysis implicated a trafficking defect in the protein, resulting in loss of post-translational processing from the immature to the mature form of HERG. No mutations were detected among the remaining four candidate genes. CONCLUSIONS: In this autopsy series, only 2 of 12 patients with unexplained sudden death were observed to have a defect in HERG among five candidate genes tested. It is likely that elucidation of SCD mechanisms in such patients will await the discovery of multiple, novel arrhythmia-causing gene defects.[1]References
- Postmortem molecular screening in unexplained sudden death. Chugh, S.S., Senashova, O., Watts, A., Tran, P.T., Zhou, Z., Gong, Q., Titus, J.L., Hayflick, S.J. J. Am. Coll. Cardiol. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg