The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 Patti,  
 

Gene expression in humans with diabetes and prediabetes: what have we learned about diabetes pathophysiology?

PURPOSE OF REVIEW: Type 2 diabetes mellitus is characterized by insulin resistance and pancreatic beta-cell dysfunction. In high-risk individuals, the earliest detectable abnormality is insulin resistance in skeletal muscle. Impaired insulin-mediated signaling, gene expression, and glycogen synthesis, and the accumulation of intramyocellular triglycerides have all been linked with insulin resistance, but no specific defect responsible for insulin resistance and diabetes mellitus has been identified in humans. However, recent analyses of gene expression patterns in muscle tissue from metabolically characterized humans have highlighted new genes and pathways potentially important in the pathogenesis of diabetes mellitus. This review will summarize these data and highlight the potential importance of oxidative metabolism in diabetes pathophysiology. RECENT FINDINGS: Genomic analysis of skeletal muscle samples from patients with diabetes mellitus has revealed the reduced expression of genes encoding key enzymes in oxidative metabolism and mitochondrial function. Moreover, the same pattern of gene expression is also observed in insulin resistant 'prediabetic' individuals with normal glucose tolerance. Many of the genes dysregulated in both diabetes and 'prediabetes' are regulated by the transcription factor nuclear respiratory factor-1 and the peroxisome proliferator-activated receptor gamma co-activator 1. These data suggest a potential role for both genetic and environmental factors to modify the risk of diabetes by modifying the expression or activity of these transcriptional regulators. SUMMARY: Nuclear respiratory factor and peroxisome proliferator activated receptor gamma co-activator-1-dependent oxidative metabolic pathways may play a central, and potentially primary, role in the pathogenesis of type 2 diabetes. Additional studies will be required to identify upstream genetic and environmental determinants of this expression phenotype.[1]

References

  1. Gene expression in humans with diabetes and prediabetes: what have we learned about diabetes pathophysiology? Patti, M.E. Current opinion in clinical nutrition and metabolic care. (2004) [Pubmed]
 
WikiGenes - Universities