The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Process development for degradation of phenol by Pseudomonas putida in hollow-fiber membrane bioreactors.

The degradation of phenol (100-2800 mg/L) by cells Pseudomonas putida CCRC14365 in an extractive hollow-fiber membrane bioreactor (HFMBR) was studied, in which the polypropylene fibers were prewetted with ethanol. The effects of flow velocity, the concentrations of phenol, and the added dispersive agent tetrasodium pyrophosphate on phenol degradation and cell growth were examined. It was shown that about 10% of phenol was sorbed on the fibers at the beginning of the degradation process. The cells P. putida fully degraded 2000 mg/L of phenol within 73 h when the cells were immobilized and separated by the fibers. Even at a level of 2800 mg/L, phenol could be degraded more than 90% after 95-h operation. At low phenol levels (< 400 mg/L) where substrate inhibition was not severe, it was more advantageous to treat the solution in a suspended system. At higher phenol levels (> 1000 mg/L), however, such HFMBR-immobilized cells could degrade phenol to a tolerable concentration with weak substrate-inhibition effect, and the degradation that followed could be completed by suspended cultures due to their larger degradation rate. The process development in an HFMBR system was also discussed.[1]

References

 
WikiGenes - Universities