The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Chemically induced renal tubule tumors in the laboratory rat and mouse: review of the NCI/NTP database and categorization of renal carcinogens based on mechanistic information.

The incidence of renal tubule carcinogenesis in male and female rats or mice with 69 chemicals from the 513 bioassays conducted to date by the NCI/NTP has been collated, the chemicals categorized, and the relationship between carcinogenesis and renal tubule hyperplasia and exacerbation of the spontaneous, age-related rodent disease chronic progressive nephropathy (CPN) examined. Where information on mechanism or mode of action exists, the chemicals have been categorized based on their ability to directly or indirectly interact with renal DNA, or on their activity via epigenetic pathways involving either direct or indirect cytotoxicity with regenerative hyperplasia, or exacerbation of CPN. Nine chemicals were identified as directly interacting with DNA, with six of these producing renal tubule tumors at high incidence in rats of both sexes, and in some cases also in mice. Ochratoxin A was the most potent compound in this group, producing a high tumor incidence at very low doses, often with metastasis. Three chemicals were discussed in the context of indirect DNA damage mediated by an oxidative free radical mechanism, one of these being from the NTP database. A third category included four chemicals that had the potential to cause DNA damage following conjugation with glutathione and subsequent enzymatic activation to a reactive species, usually a thiol-containing entity. Two chemicals were allocated into the category involving a direct cytotoxic action on the renal tubule followed by sustained compensatory cell proliferation, while nine were included in a group where the cell loss and sustained increase in renal tubule cell turnover were dependent on lysosomal accumulation of the male rat-specific protein, alpha2mu-globulin. In a sixth category, morphologic evidence on two chemicals indicated that the renal tumors were a consequence of exacerbated CPN. For the remaining chemicals, there were no pertinent data enabling assignment to a mechanistic category. Accordingly, these chemicals, acting through an as yet unknown mechanism, were grouped as either being associated with an enhancement of CPN (category 7, 16 chemicals), or not associated with enhanced CPN (category 8, 4 chemicals). A ninth category dealt with 11 chemicals that were regarded as producing increases in renal tubule tumors that did not reach statistical significance. A 10th category discussed 6 chemicals that induced renal tumors in mice but not in rats, plus 8 chemicals that produced a low incidence of renal tubule tumors in mice that did not reach statistical significance. As more mechanistic data are generated, some chemicals will inevitably be placed in different groups, particularly those from categories 7 and 8. A large number of chemicals in the series exacerbated CPN, but those in category 7 especially may be candidates for inclusion in category 6 when further information is gleaned from the relevant NTP studies. Also, new data on specific chemicals will probably expand category 5 as cytotoxicity and cell regeneration are identified as obligatory steps in renal carcinogenesis in more cases. Additional confirmatory outcomes arising from this review are that metastases from renal tubule tumors, while encountered with chemicals causing DNA damage, are rare with those acting through an epigenetic pathway, with the exception being fumonisin B1; that male rats and mice are generally more susceptible than female rats and mice to chemical induction of renal tubule tumors; and that a background of atypical tubule hyperplasia is a useful indicator reflecting a chemically associated renal tubule tumor response. With respect to renal tubule tumors and human risk assessment, chemicals in categories 1 and 2, and possibly 3, would currently be judged by linear default methods; chemicals in category 4 (and probably some in category 3) as exhibiting a threshold of activity warranting the benchmark approach; and those in categories 5 and 6 as representing mechanisms that have no relevance for extrapolation to humans.[1]

References

 
WikiGenes - Universities