The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Molecular characterization and transcriptional regulation of nitrate reductase in a ruminal bacterium, Selenomonas ruminantium.

Nitrate reductase (NaR) of a strain of Selenomonas ruminantium was purified, and the gene encoding NaR (nar) was sequenced. The 6.4 kbp nar gene consisted of narG, H, J, and I in this order. The deduced amino acid sequences of these subunits resembled those of membrane-bound nitrate reductase-A reported for Escherichia coli. It was shown that narG, H, J, and I are transcribed as a single polycistronic message (nar operon). The level of intracellular nar-mRNA was higher when S. ruminantium was grown with nitrate than when grown without nitrate, suggesting that nar transcription is enhanced by nitrate. The level of nar-mRNA, which was in parallel to the amount of NaR per cellular nitrogen, was suggested to be enhanced in response to the deficiency of energy and electron supply. Therefore, NaR synthesis in S. ruminantium appeared to be regulated at the transcriptional level in response to the availability of energy and electrons. S. ruminantium reduced nitrate and fumarate simultaneously with no significant effect of fumarate on nar transcription. Addition of fumarate stimulated nitrate reduction, which was caused by increased cell growth because of increased acquirement of ATP via electron transport phosphorylation coupled with fumarate reduction.[1]

References

 
WikiGenes - Universities