The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Activity-regulated cytoskeleton-associated protein Arc is targeted to dendrites and coexpressed with mu-opioid receptors in postnatal rat caudate-putamen nucleus.

Dendritic expression of the activity-regulated cytoskeleton-associated protein (Arc) is dramatically enhanced by increased synaptic activity in adult brain. We used immunocytochemical electron microscopy to determine whether the subcellular localization of Arc in developing dendrites corresponds to the peak period of synaptogenesis in the postnatal rat caudate-putamen nucleus (CPN). The distribution was compared with that of mu-opioid receptors (MORs), whose localization in dendritic spines closely parallels excitatory synapse formation during postnatal development (Wang et al. [2003] Neuroscience 118:695-708). Sections were processed for immunocytochemical detection of antisera against Arc or MORs at the beginning (postnatal day 15; P15) and the end (P30) of the peak period of synaptogenesis in rat CPN. At P15, immunolabeling for Arc showed a punctate distribution in the cytoplasm of dendritic shafts, some of which was associated with polyribosomes. In some spiny dendrites, Arc immunoreactivity was more intensely localized in putative spines than in their parental dendrites, whereas, in other spiny dendrites, Arc labeling was restricted in the shafts. Many dendritic shafts and spines also showed immunoreactivity for MORs, although dually labeled spines were less numerous than the shafts. At P30, the proportion of singly and dually labeled spines significantly increased from 2.0% to 7.5% and from 9.5% to 21%, respectively. Arc labeling in spines was more detectable beneath the postsynaptic density or at extrasynaptic sites on the plasma membrane. Our results suggest a correlation between Arc expression in dendritic spines during postnatal development and the onset of synaptogenesis in opioid-responsive neurons in the rat CPN.[1]

References

 
WikiGenes - Universities