The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mouse 3-phosphoglycerate dehydrogenase gene: genomic organization, chromosomal localization, and promoter analysis.

d-3-Phosphoglycerate dehydrogenase (Phgdh; EC 1.1.1.95) is the first committed enzyme of l-serine biosynthesis in the phosphorylated pathway. We have recently demonstrated that, in developing and mature brain, expression of Phgdh is highly regulated in a cell lineage-specific manner, mainly in neuroepithelial stem cells, radial glia, and astrocytes (J. Neurosci. 21 (2001) 7691; Arch. Histol. Cytol. 66 (2003) 109). To gain insight into the regulatory mechanism of Phgdh expression, we have isolated a mouse genomic clone that contains the entire mouse Phgdh gene. Structural analysis demonstrated that the Phgdh gene spans approximately 27 kilobases (kb) in length and comprises 12 exons with 11 intervening introns. Using fluorescent in situ hybridization (FISH), we mapped the gene to mouse chromosome 3, region F2-F3. Analysis of a 1.8 kb fragment of the 5'-flanking region showed that the classical TATA-box motif near transcription initiation sites was absent. Instead, a GC-rich proximal region containing a potential Sp1 recognition sequence was present; this region is conserved in mouse, rat, and human counterparts. Transient transfection analysis revealed that the cis-acting elements necessary for basal transcription of Phgdh are contained within the -196/+4 proximal sequence of the promoter, in which the conserved Sp1 recognition sites play an important role for basal promoter activity.[1]

References

  1. Mouse 3-phosphoglycerate dehydrogenase gene: genomic organization, chromosomal localization, and promoter analysis. Mitoma, J., Furuya, S., Shimizu, M., Shinoda, Y., Yoshida, K., Azuma, N., Tanaka, H., Suzuki, Y., Hirabayashi, Y. Gene (2004) [Pubmed]
 
WikiGenes - Universities