The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

MIP-1 gamma promotes receptor-activator-of-NF-kappa-B-ligand-induced osteoclast formation and survival.

Chemokines play an important role in immune and inflammatory responses by inducing migration and adhesion of leukocytes, and have also been reported to modulate osteoclast differentiation from hemopoietic precursor cells of the monocyte-macrophage lineage. In this study, we examined the effect of MIP-1 gamma, a C-C chemokine family member, on receptor activator of NF-kappa B ligand (RANKL)-stimulated osteoclast differentiation, survival, and activation. RANKL induced osteoclasts to dramatically increase production of MIP-1 gamma and to also express the MIP-1 gamma receptor CCR1, but had only minor effects on the related C-C chemokines MIP-1 alpha and RANTES. Neutralization of MIP-1 gamma with specific Ab reduced RANKL-stimulated osteoclast differentiation by 60-70%. Mature osteoclasts underwent apoptosis within 24 h after removal of RANKL, as shown by increased caspase 3 activity and DNA fragmentation. Apoptosis was reduced by the addition of exogenous MIP-1 gamma or RANKL, both of which increased NF-kappa B activation in osteoclasts. Neutralization studies showed that the prosurvival effect of RANKL was in part dependent on its ability to induce MIP-1 gamma. Finally, osteoclast activation for bone resorption was stimulated by MIP-1 gamma. Taken together, these results demonstrate that MIP-1 gamma plays an important role in the differentiation and survival of osteoclasts, most likely via an autocrine pathway.[1]

References

  1. MIP-1 gamma promotes receptor-activator-of-NF-kappa-B-ligand-induced osteoclast formation and survival. Okamatsu, Y., Kim, D., Battaglino, R., Sasaki, H., Späte, U., Stashenko, P. J. Immunol. (2004) [Pubmed]
 
WikiGenes - Universities