Water-protein interactions from high-resolution protein crystallography

Philos Trans R Soc Lond B Biol Sci. 2004 Aug 29;359(1448):1191-204; discussion 1204-6. doi: 10.1098/rstb.2004.1498.

Abstract

To understand the role of water in life at molecular and atomic levels, structures and interactions at the protein-water interface have been investigated by cryogenic X-ray crystallography. The method enabled a much clearer visualization of definite hydration sites on the protein surface than at ambient temperature. Using the structural models of proteins, including several hydration water molecules, the characteristics in hydration structures were systematically analysed for the amount, the interaction geometries between water molecules and proteins, and the local and global distribution of water molecules on the surface of proteins. The tetrahedral hydrogen-bond geometry of water molecules in bulk solvent was retained at the interface and enabled the extension of a three-dimensional chain connection of a hydrogen-bond network among hydration water molecules and polar protein atoms over the entire surface of proteins. Networks of hydrogen bonds were quite flexible to accommodate and/or to regulate the conformational changes of proteins such as domain motions. The present experimental results may have profound implications in the understanding of the physico-chemical principles governing the dynamics of proteins in an aqueous environment and a discussion of why water is essential to life at a molecular level.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Crystallography, X-Ray / methods*
  • Freezing
  • Hydrogen Bonding
  • Models, Chemical*
  • Protein Conformation
  • Proteins / chemistry*
  • Proteins / metabolism
  • Water / chemistry*
  • Water / metabolism

Substances

  • Proteins
  • Water