The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Capsazepine is a novel activator of the delta subunit of the human epithelial Na+ channel.

The amiloride-sensitive epithelial Na+ channel (ENaC) regulates Na+ homeostasis into cells and across epithelia. So far, four homologous subunits of mammalian ENaC have been isolated and are denoted as alpha, beta, gamma, and delta. The chemical agents acting on ENaC are, however, largely unknown, except for amiloride and benzamil as ENaC inhibitors. In particular, there are no agonists currently known that are selective for ENaCdelta, which is mainly expressed in the brain. Here we demonstrate that capsazepine, a competitive antagonist for transient receptor potential vanilloid subfamily 1, potentiates the activity of human ENaCdeltabetagamma (hENaCdeltabetagamma) heteromultimer expressed in Xenopus oocytes. The inward currents at a holding potential of -60 mV in hENaCdeltabetagamma-expressing oocytes were markedly enhanced by the application of capsazepine (> or =1 microM), and the capsazepine-induced current was mostly abolished by the addition of 100 microM amiloride. The stimulatory effects of capsazepine on the inward current were concentration-dependent with an EC50 value of 8 microM. Neither the application of other vanilloid compounds (capsaicin, resiniferatoxin, and olvanil) nor a structurally related compound (dopamine) modulated the inward current. Although hENaCdelta homomer was also significantly activated by capsazepine, unexpectedly, capsazepine had no effect on hENaCalpha and caused a slight decrease on the hENaCalphabetagamma current. In conclusion, capsazepine acts on ENaCdelta and acts together with protons. Other vanilloids tested do not have any effect. These findings identify capsazepine as the first known chemical activator of ENaCdelta.[1]

References

  1. Capsazepine is a novel activator of the delta subunit of the human epithelial Na+ channel. Yamamura, H., Ugawa, S., Ueda, T., Nagao, M., Shimada, S. J. Biol. Chem. (2004) [Pubmed]
 
WikiGenes - Universities