Mitochondrial permeability: dual role for the ADP/ATP translocator?
The ADP/ATP translocator (or adenine nucleotide translocase; ANT) is thought to play a dual role: in the transport of ADP and ATP across the mitochondrial inner membrane and in the formation of the mitochondrial permeability-transition pore (mtPTP), a nonspecific pore that is an important mediator of apoptosis (programmed cell death). However, Kokoszka et al. have shown that mitochondria from livers of 'ANT-knockout' mice, in which the ANT has been genetically inactivated, still possess mtPTP activity. From this, the authors conclude that the ANT is a non-essential component of the mtPTP that may be dispensable for mtPTP-associated cell death. These results, which contradict previous evidence and cast doubt on a widely accepted model for the mtPTP (ref. 1), warrant scrutiny and call for a fundamental reappraisal of the role of the ANT in liver metabolism.[1]References
- Mitochondrial permeability: dual role for the ADP/ATP translocator? Halestrap, A.P. Nature (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg