The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Respiratory properties and malate metabolism in Percoll-purified mitochondria isolated from pineapple, Ananas comosus (L.) Merr. cv. smooth cayenne.

An investigation was made of the respiratory properties and the role of the mitochondria isolated from one phosphoenolpyruvate carboxykinase (PCK)-CAM plant Ananas comosus (pineapple) in malate metabolism during CAM phase III. Pineapple mitochondria showed very high malate dehydrogenase (MDH), and low malic enzyme (ME) and glutamate-oxaloacetate transaminase (GOT) activities. The mitochondria readily oxidized succinate and NADH with high rates and coupling, while they only oxidized NADPH in the presence of Ca(2+). Pineapple mitochondria oxidized malate with low rates under most assay conditions, despite increasing malate concentrations, optimizing pH, providing cofactors such as coenzyme A, thiamine pyrophosphate, and NAD(+), and supplying individually external glutamate or GOT. However, providing glutamate and GOT simultaneously strongly increased the rates of malate oxidation. The OAA easily permeated the mitochondrial membranes to import into or export out of pineapple mitochondria during malate oxidation, but the mitochondria did not consume external Asp or alpha-KG. These results suggest that OAA played a significant role in the mitochondrial malate metabolism of pineapple, in which malate was mainly oxidized by active mMDH to produce OAA which could be exported outside the mitochondria via a malate-OAA shuttle. Cytosolic GOT then consumed OAA by transamination in the presence of glutamate, leading to a large increase in respiration rates. The malate-OAA shuttle might operate as a supporting system for decarboxylation in phase III of PCK-CAM pineapple. This shuttle system may be important in pineapple to provide a source of energy and substrate OAA for cytosolic PCK activity during the day when cytosolic OAA and ATP was limited for the overall decarboxylation process.[1]

References

 
WikiGenes - Universities